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Impulse and theorem of momentum A EMZNEEIE:

Momentum & : The area under the curve of net force versus
time equals the impulse of the net force:
N y
P=mv 8, Area = J, = [EFdr
: I
Impulse HE: We can also calculate the
e impulse by replacing the
P O PaA. O p varying net force with an
J=XFAt=XF(t; —t1) average net force:
Area = J,
7 — i (Ep)y 1 Z
-] - IZF dt e .."- == (‘Lu\),\'(rl £ II)
o
Impulse-Momentum Theorem
.~ - h I !
J=P,—P; or le—i, —2—=s

Average force I:"a,,: f = ﬁav(tz —t1)

Example: A Zkgobject is throwing toward a wall. During the collision with the
wall lasting from t = 0 to t = 0.2s, the force acting on the object is given by the
equation F = 300t(0.2 — t)7 (N)

(a) The impulse that the force acts on the object during the collision is:

J= [T Edt=["300t(0.2 - idt = (30t2 — 100¢3)32 = 0.4 (kgm/s)

(b) The average force on the object is:

= ] 04
Fav - . - —
t—t;  0.2—0

=2 (N)

Exercise 11:A bullet shoot out of a gun at vy (m/s). While the bullet
accelerates in the barrel of the gun, the total force that is applied on it is
F=a—-bt (a,bareconstantand t isin second)

(a) Suppose the total force that the bullet is subjected to is zero upon the exit of
the gun, calculate the total time that the bullet takes to run through the
barrel.

F=a—-bt=0=>t=a/b
(b) Calculate the momentum of the bullet.

a/b 2

P t a/b tz a
deP=f0th=fo (a—bt)dt=<at—b?> =35

0
(c) Calculate the mass of the bullet.

2

a a
P=myvyg=—>m=
2b 2bvg

2
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Collision in one dimension(Central impact) —#E&b#E (% U REIE)

General Case:

uq uz
m1u1 + mzuz = m1v1 + m1v2 : : : :

Coefficient of restitution e: a B e siin

measure of the elasticity of a collision. It i V2
is defined as the ratio of the speed of ( : C

recession to the speed of approach. After collision
Uy —Vq
e =——
U — Uz
my —em, (1+e)m,
vy = 2

1
my +m, my; +m,

_Qteom, o em-my T WARFAE

vy, = -

my +m, ! my +m,
Kinetic energy lost during the collision:

1 oy Mimy )
AEy 105t = Exi — Exp = 5(1 —e )m(w —Uy)

e = 0: Perfectly inelastic collision. AE}, _;,s+ get the maximum value.

UV =V . .
e = —— = 1: Elastic collision. AE;, _;,;; = 0
Uy — U
® In elastic collisions, the speed of separation equals the speed of

approach.

® The Kinetic energy of the system is the same before and after the

collision.

Some special situation in elastic o

. . Before @ —2 —_—
collision

"~y "y
L »,
After S —
® My =my; = VUV =Uy,Vy =1U

-, my; —m, 2ms,
The velocities are swapped vy =— U +————U
my; +m, my +m;
® mKm, and u, =0 = v; = el .
1 1 2
—Uq,v, =0 Vs T 1)y, ———— 1
"G My my -+ m;

The first object rebounds almost
at the same speed

® m;>»m, and u, =0 = v; = Uy, v, = 2u,

The first object almost keeps the same velocity and the velocity of the

second object is twice of the first one.

0 < e < 1:Inelastic collision.
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Example: The sling shot effect is v
e — o ——— -
used to accelerate a spacecraft in ™
a planetary flyby. The speed of — \‘-.\
oo

Saturn relative to the Sun is Vs . ,y

—— |
uy = 9.6km/s. A spacecraft with d'// M /
speed uy, = 10.4km/s relative to /

the Sun moves towards the LU T s 4
Saturn. The spacecraft moves e e P S
around and then leaves the

Saturn. Calculate the speed of the spacecraft relative to the Sun when it leaves
the Saturn.

The entire procedure can be regards as elastic collision.

Muy + muy = Mvy + mvy 2Muy, — (M — m)uy,
1 2 1 2 1 2 1 2 = vf = M + m
5 Mug + FMuy =5 Mg + ZMuy
Since M » m = vy = 2uy —ug = 29.6 (km/s)
Collision in two and three dimensions — =4 ®f#=

Collision in two and three dimensions

Two balls with masses m and 2m approach each other ;

with equal speeds v on a horizontal frictionless table, &~ | )
a5 shown in the top view. Which of the following
shows possible velocities of the balls for a time sgon
after the balls collide?

A B. C. D. ki

%
w

@
i
O

Collision in two and three dimensions

e 1 - F
Rewrite the equation in components. Assume the angle L

e = ap. x| 1. I = L
between ¥yand i, is 8, the angle between vsand i, is 8,

Mty =m0 0088, + marsrosd,
iy 2 5ingy = mpvpsinds

% i
Smuf = Emlr-,z + =mavj

We only have three equations but there are four variables in total.

We need more information such as measuring 8, to solve the ghove

Sifadons e
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Collision in two and three dimensions e
,
If the collision is not central impact, the situation will -——-- = S
be complicated. It is a two dimensional even three ity
dimensional problem. We just consider some simple o
cases here.
» Perfectly inelastic collision:
! it A I'TT.ll:'.‘l + m:ﬁz
my iy + mpit; = (my + mz)ﬂf L Vp = *—W
¥ Elastic collision with i, = 0: Itis a two dimensional problem.
Conservation of linear momentum:  m,ii;, = m;#; 4+ myij;
. SR P R ETR g
Conservation of kinetic energy: Fmui =zmvi + zmzv.
Motion of object with varying mass
m m
Discussion about the result: v = v, In ey iy . /
mo — 7)‘1". a INSTRUMINT Uit
* If we ignore all external forces: K
mo ) “(Dl‘;-.).‘.l?.d ‘
v = v, In———— == Rocket equation v
mo = mf ‘.ss-u:h/' ;
* If we want to accelerate the rocket to a larger speed: %‘(j
ehnt
Multi-stage rocket: Using two or more rocket stages. =

> For a two stage rocket:

my my m m
v=v.|In +In =1u.ln 2 . .
r e o
my mfl my — mfz mg — mf-]_ e mfz

VN

)
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Particle System R R %

Considering a system consists of n
particles, if the system is isolated:
The total momentum for an

isolated system is conserved [ £ i r,
N - — 3 .
YRGBT ra :
If the system is open and external
; ; 'Ili

force act on particles: The change
rage of total linear momentum
of a system equals to the sum of
all external force act on the

system(ANAAEHNE, RAFINAETHE).

Summarize:

d R
For an isolated system: % =0 = p; = constant

Conservation of linear momentum zh& {8 €

a5, - G -
For an open system: dt = Fnet—ext = Apt = f Fret-extdt = Inet—ext
ty

Notice:
® Impulse-momentum theorem is only suitable for inertial reference

frame.
® Linear momentum is determined by the state of the system.
® Impulse is related to the process.

® The equation is a vector equation, the net external force in any
direction is zero, then the total linear momentum in that direction is

conserved.

Impulse-Momentum Theorem for a particle system:

Notice:

~ Internal force has no influence to the total momentum of the system, but e
it will influence the momentum of an individual particle in the system. RARRER G &

~ In the process such as collision, explosion, etc. The internal force is much
larger than the external force. Thus, the system can usually be treated as
an isolated system for the duration of the process.

» Impulse-momentum theorem and conservation of linear momentum can
be derived from Newton’s laws of motion but it is suitable in some cases
when Newton's laws of motion do not hold.
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Impulse-Momentum Theorem for a particle system:

A small block of mass m, slides at rest down from the top of a slope inclined at
an angle 0 to the horizontal, the mass of slope is m, and the height of the
slope is H as shown. All of the surfaces are smooth. Try to determine the
displacement of the slope when block reaches the bottom of the slope.

44

/i

=

0

A

|Solution 1: HEFEEE+IM

® Em,INEE A, YA
® Em XN Tm,AERE AV, v
o AN THENEE N, + b, — 1)
1 km, fEXTHOE A vy b M2
x: vycosfd — v,
{y: v, sin@
2. x JIEEFIE
my(vq cosf —v,) —myv, =0 (1)
3. EFE
mygH = %ml [(v1 cos@ — v,)? + (v, sinB)?] + %mzvg (2)
4 HBEFRERE S (DFQBEZ, kitiv]
m, cos 6 _ v? =2a,(H/sin)kHa,
1) > v, =—— v, pluginto (2 .
(1) = v, m, +m, L Plue (2) o Fla R t
1 my 2 ) m,(a, cos @ — a,) = mya,>3kHa,
mgH =—-m (17 cosf ———v cose) + (v, sin@ 2] .
19 2 1[ 1 my + m, 1 (v, ) 4, t R,
1 my 2
+ Emz (mvl Cos 9)
1 m, \? 5 .
mygH = 5™ <m> (v, cos0)* + (v, sinH)
1 my 2
+ Emz (mvl Cos 9)
2 m, 2
2mygH = my [( ) cos? 6 + sin? 9] vi+m, <—cos 9) vi
my; +m, my; +m,
2 m 2
2mygH = {[ml <L> +m, <—1> ] cos? 6 + m, sin? 9} Z
m; +m, my; +m,

2mygH = {[m; + m;] cos? 6 + m, sin? B}v?

) 2m,gH H
171 = {[ 2 ) = Zal(_)
my +m,] cos? 6 + m, sin? 6} sin 6
mqygsin@
a

- (my + my,) cos? 6 + m, sin? 6

BREFTERERT.
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|Solution 2: IEB MR P AYE M S Inertial forces in non-inertial frames‘
1. $my AR AR M Fom, iR (5 5 1 ) N
® Letthe acceleration of m, be a, and ground is
the reference frame. (inertial frame) Fy
® Leta be the acceleration of m; with respectto m,
. . mqa
(non-inertial frame)? ‘
F,: Normal force
myg: gravity
mya,: pseudo «——; FERMER R RYIR M I m. g
mya; cosf + my;gsinf = mya
{Fn + mya,sinf = mqgcosb (D
=>a=a,cosf + gsinf (2)
AY

2. mERMER PITIe
® N: Normal force
® m,g: gravity

® [,.: Normalto the incline (by the block m,)

v X

/

F,sinf = mya, = F, =mya,/sinfd (3)
Plug (3) into (1
g (3) into (1) mms\
mpa; . F
Y + mya,sinf = mygcos@
m, g siné cos 8
= a, =2 @)

m, + m, sin? 0

3. Kiimy X Fm B INEE a
Plug (4) into (2)
mq g sin@ cos 0

a= —————cosf +gsinf =

m, + m, sin? 6

4. my7E slop FHYBITEES s &

(my + my)gsinf

m, + my sin? 0

_H 1, ., 25 2H
S_siné? _Eat =t “a asind
5. Slop A& BITHIEEEx, 2
1, 1/mysinfcosf 2H
X2 = Eazt - E(mz + m, sin? 9g> asin@
g(mysin@cosf\ 2H m,+mysin?6
) (mz + m, sin? 9) sin@ (my; + m,)g sinf
m4 cotd
- my +m,
Key Point:
1L mpidm2aFRMRPINE, FEEARMSD. EEm2&RMRS

Wit AREEMBIELS

2. BRUENNKNZHEREM MIFRERINEEa, (95RIR, T a8

3

' https://en.wikipedia.org/wiki/Fictitious_force
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Solution 3: FEFIEEEEEN AT A

o Bm,MEEND, YA

® iG&m HXTFm,AEE A, v

o m AN TFHENEE LD, + b, — | )
vy X 2 M2
1

1. x FHAzHESE

my (v, cosf —v,) —myv, =0

t t t
=>m1<f vlcosedt—fvzdt>—m2fv2dt=0
0 0 0

= my(x;c0s0 —x) —mMyx, =0
o T, 73 51 Aymy Mim, F9 R4S

my(x,cos0 — Xp) = MyXy

myxq oS 6 = myx, + myx, (D

2. SHTHEXHEE
IKETF5 18 Emy B X m, E s B EE B 2 x4 cos 6

H= oy = Dlginto (1
~ sin@ xl_sine plug into (1)
0= +

my s cos (my + my)x,
m; Hcos8
x2 = .
my +m, sin6
Key Point:

1. HEFEEEMTT vEEALN, ¥FxthEEAN.

X FEEHH 0

> x AEHEFE

S MyU MU=, U+ My,

S My Xyq M Xy =My X Mo Xy (B FEGR EE HR 4 (IF5)
2. AEBMEXNEEROT

m1’|‘ﬁﬂ‘.1'm2 El‘]ﬁi}g%ﬁl = mﬂlﬁﬁtmz El‘]'ﬁ_ﬁﬁy”%Ja

m XN ENEREE RV, + v,
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Center of mass ffi/(»
Center of mass J&(»:

For a system consists of n particles with mass m; and position (x;,y;)

myxy + maXxy + 0 Ximx;

xcm -
m1+m2+"‘ Zimi

_ My +myy; + - _ Ximy;
m1+m2+"' Zlml

cm

For a system with continuous mass distribution:

[ xdm
Xem = fdm
Jydm
Yo = Fam

Center of mass reference frame /L& X% Z&:

c
Center of mass reference frame nwy P
L] [
ForapointP;, ¢ =7, + re
Where 7} is the position vector of P; in an arbitrary . e
inertial reference frame and 1€ is the position vector of 0 ¢ T
P; in the center of mass reference frame. x
. L=y myr Xizy my(Tem +77) ) Vi=1 Ml
lhen: e e n STem Towm
N, my ey my Tiey My
_— 7 = ; STy K position vector of the center of mass in the
R T2 .y center of mass reference frame is zero.
n 2> n = ]
. ae _ Di=1 M4V B P, X5 T
Similarly, we have Vi = —(—;— =10 e —
{=1 "4 (=1 MY
Example 1: A person is
standing at one end of a Cﬁmcr C}f
. ass
uniform raft of length L Center Sysi o
i rar o ens of ystem
that is floating motionless
8 Raft ™\,
on water, as shown. The
center of mass of the =
person-raft system is a ' L |

distance d from the J

center of the raft. The person then walks to the other end of the raft.
If friction between the raft and the water is negligible, how far does the draft

move relative to the water?

x = 2d

- | WEmps EEREET
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Center of mass reference frame RIS X% &

A uniform soft rope with mass m and length | hangs
vertically with its lower end just touching the ground.
The rope is released from rest. Try to calculate the
force of the ground acting on the rope when the
remaining length in the air is z.

Momentum s ZI&:  Psys = Mgy

HIRE T E R Fext = macm

A=

m
1

Center of mass location

Z z
1 z?2
zcm=—f/12d2——f—zdz=ﬁ
0 0
_dzem Z(dZ)
Yem = "ar T 1\at
_ dvey, 1(dz>2+z d’z\ 2g(l—2z) 9z _ 5. %
Gom =g “7\at) T1\aez) T | 1979
dz ITENXERES v, Ma, 8
—=v, =—/2g9(l—2) RN E o
dt Firo KALR
d?z XMITER R,
@ =%=9
z l—2z
macm=F—mg=>F=macm+mg=m(2g—3gT)+mg=3mg ]

If the center of mass reference frame is a non-inertial frame(Optional)

Center of mass reference frame (Optional)
if the center of mass reference frame is a non-inertial frame, considering
the work done by the inertial force:

n

n o |
T \—| ¢ Ihgr_.' 1 Z_”tl fi.'ln 47" = = Zu’[rn!;.
""_‘ i=1

=1

Recap:
T

H
~ 14 S
_ =1 ”E_Irl_ = {) L —@em 'Ed{mﬁﬁ"‘] =1
=3

il':t.' -
CTrn n
Li=1 M

Even the center of mass reference frame is a non-inertial frame, the work
done by inertial force to the system is zero. Work-energy principle and

conservation of mechanical energy 1s suitable in this frame.
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Center of mass reference frame

For an isolated system or the net external force acts on the system is zero.
dﬁt - = p=d
dt =My, = Fretmext =0 = 0y =0

center of mass reference frame is inertial in this case

If the net external force acts on the system is not zero.

- =1 -
Macm = Fret—ext = Gom 0

center of mass reference frame is a non-inertial frame in this case
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Motion of Object with Varying Mass X i B R 4

Example: An open-top railroad car (initially empty Y

and of mass m,) rolls with negligible friction along

a straight horizontal track and passes under the - v
spout of a sand conveyor. When the car is under the m

conveyor, sand is dispensed from the conveyor in a
narrow stream at a steady rate dm/dt = C and falls vertically to the car. The

car has initial speed v, and sand is filling it from time t =0tot =T.

(a) Calculate the mass m of the car plus the sand that it catches as a function of
time t from 0<t<T.

Weight of sand: dm = Cdt = foms dm = fOT Cdt = mg; = Ct

Total weight m = mg + my = Ct + m,

(b) Determine the speed v of the car as a function of time t from 0<t<T.
In the horizontal direction, as the friction is negligible, the Momentum of the
car-sand system keeps constant:

MoVo

P =myvy = (Ct + my)v(t) = v(t) = p—

(c) If you want to keep the velocity of the car constant, what kind of force needs
to act on the car.
To keep the sand-car system’s velocity constant, an impulse must be applied
to the sand:

t m t
det=f Uodm=f voCdt = Ft = vyCt = F = Cv,
0 0 0

Example: A uniform soft rope with mass m and
length I hangs vertically with its lower end just

touching the ground. The rope is released from rest.

Try to calculate the force of the ground |-z
acting on the rope when the remaining A Z yy
length in the air is z.

A
HANKELETHAT+ERE deR | fr
FETHAET °
AR dt R, FETETHKER dz, z
HRERZ dm. v W

(E, —W)dt = [0 — (—v)]dm
Y

WE2ETETHNRE || dn o PRI 8 de sk

A A

l—2z m m
W=m i g dm:szzT(th)

l—z m m
(Fn —ng> dt = vdm = vT(vdt) = vadt (D

v2 =2g(l - z),pluginto (1) = E, — ml_TZg =[2g( — Z)]% = 3mgl_TZ
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Key Point:
1. BN RNREELEEFF LS FMATE dt E TR 72
2. [0=(=v)]dm ERFHFSRAES L.

My My e

- Discussion about the result: v = v, In

my—my @ . ; F i
-1vi.
< If weignore all external forces: =)’
my AN
v = 1. In———— == Rocket equation - '
my — mf e 1

| * If we want to accelerate the rocket to a larger speed:
- Multi-stage rocket: Using two or more rocket stages.
> For a two stage rocket:

Outline F%5
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